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Super-Resolution 3-D Microwave Imaging of
Objects With High Contrasts by a Semijoin
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Abstract— This article proposes a semijoin extreme learning
machine (SJ-ELM) for super-resolution 3-D microwave imaging
of objects with high contrasts. The proposed scheme develops a
shallow neural network structure with the semijoin strategy to
convert the scattered field data into two output channels, namely,
the permittivity and the conductivity of objects, respectively.
The semijoin strategy can decrease the inner matrix dimensions
to reduce the computational burden for 3-D super-resolution
imaging, so it is employed to connect between the nodes of the
hidden layer and the output layer. The imaging performance of
the proposed SJ-ELM and the conventional variational Born iter-
ative method (VBIM) is first compared for imaging objects with
different electrical sizes and contrasts, and then, different targets
of imaging resolution are designed to evaluate both solvers. The
proposed SJ-ELM is also assessed for imaging objects with high
contrasts and experimental data and is demonstrated to have
superior super-resolution imaging capabilities for high-contrast
3-D objects.

Index Terms— Extreme learning machine (ELM), high con-
trast, microwave imaging (MWI), super-resolution.

I. INTRODUCTION

AS AN electromagnetic inverse scattering problem,
microwave imaging (MWI), which is a noninvasive and

nondestructive technique to inspect materials by using incident
electromagnetic waves generated in the microwave range, has
gained a lot of interest recently. The capabilities of microwaves
in penetrating dielectric materials have led this diagnostic tech-
nique to be proposed in several application scenarios, such as
biomedical imaging [1]–[8], through-wall imaging [9], airport
security [10]–[12], and geophysical inspection [13]–[17].
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Due to the intrinsic nonlinearity of the inverse scattering
problem and the ill-posedness of the discretized matrix equa-
tions, it is a challenging task to find a reliable, accurate,
and numerically efficient inversion method [9]. Usually, MWI
could be classified as quantitative and qualitative [6].

Qualitative MWI, which sacrifices the accuracy in favor
of computational speed, could give the approximate shapes
and locations of the unknown targets with low computa-
tional costs. Therefore, in many scenarios where the real-time
results are necessary, qualitative MWI is always adopted.
Afsari et al. [18] proposed a fast medical microwave tomog-
raphy algorithm that could be potentially used in emer-
gency medical scenarios, such as professional sports or
road accidents. The back-projection (BP) tomography [19]
and diffraction tomography [20] were adopted in real-time
through-wall imaging. Another important application is syn-
thetic aperture radar (SAR). It has been used to image the
earth’s surface [21], [22] or detect moving targets [23]. How-
ever, qualitative MWI only gives the images of the targets and
cannot be used to retrieve their dielectric properties.

For the quantitative MWI, more model parameters of the
unknown targets, including shapes, positions, and dielectric
parameters, could be obtained. Usually, according to the min-
imization procedure of the cost function, quantitative methods
could be classified into the deterministic inversion method
and the stochastic inversion method [13]. Nonlinear methods,
such as the subspace optimization method (SOM) [25], [26],
the contrast source-type inversion (CSI) method [27]–[30], and
the Born iterative method (BIM) [24] and its variants, are
the commonly used deterministic methods that could recon-
struct the model parameters of the unknown objects through
minimizing the misfit between the calculated and measured
scattered field data iteratively.

The stochastic methods, such as the genetic algorithm (GA)
[31]–[33], the particle swarm optimization (PSO) [34]–[36],
and the memetic algorithm (MA) [37], have also been applied
to MWI [38]. Compared with the deterministic method,
the stochastic method can avoid being trapped into the local
minima of the cost function. However, for the stochastic
method, the dimension of unknown model parameters is
severely restricted and, thus, is especially problematic for the
3-D voxel-based inversion in which the dielectric parameters
in all discretized cells need to be retrieved.
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In recent years, combined with machine learning techniques,
some new methodologies have been proposed to reconstruct
the shapes, positions, and dielectric parameters of the unknown
targets [39], [40]. The pixel/voxel-based method, where the
value of the dielectric parameter of each pixel/voxel is an
independent parameter, could conveniently present any number
of spatially inhomogeneous objects for the 2-D and 3-D
problems, respectively; thus, this kind of method has attracted
more and more attention and studies. A novel deep learning
neural network architecture, termed DeepNIS, is proposed
for 2-D objects inversion in [41]. In DeepNIS, the back-
propagation method algorithm is first employed to generate
complex-valued images as the inputs of a cascade of three
convolutional neural network modules; then, CNN modules are
used to improve the image quality one by one and output the
dielectric parameter distribution of the imaging domain. With
the verification of several representative tests, the DeepNIS
has a better performance in terms of both the reconstruction
accuracy and computational time, compared with conventional
nonlinear inverse scattering methods. Based on U-Net, three
schemes, the direct inversion scheme (DIS), the BP scheme
(BPS), and the dominant current scheme (DCS), are proposed
and compared for 2-D objects inversion in [42]. In terms of
the results of simulated and experimental data, the proposed
DCS outperforms the other two schemes. In [43], an inversion
method based on the Born approximation (BA) and a 3-D
U-Net is proposed for 3-D object inversion, where BA is
employed to produce the preliminary 3-D images as the input
of 3-D U-Net.

Usually, solving a 3-D super-resolution imaging problem
with high-contrast objects requires either large memory stor-
age and/or expensive computation. The deterministic methods
are quite sensitive to initial guesses obtained from lin-
earized approximation. When the objects have high contrasts,
the deterministic methods will fail. Meanwhile, in such 3-D
problems, the stochastic optimization methods require quite a
huge computational cost, including CPU time and memory.
Furthermore, as the input of the traditional machine learning
methods (such as DeepNIS, BPS, and DCS) is also obtained
from a linearized approximation, when the contrasts of objects
are high, it is hard to obtain desired input from the linearized
approximation. In addition, the DIS in [42] can directly
map scattered field data to the object parameter distribution;
however, as explained in [42], due to the unmatched model
structure, the accuracy is not ideal. Meanwhile, the methods
proposed in these studies are devoted to solve 2-D inverse
scattering problems. Although the BA-3-D U-Net model [43]
could reconstruct 3-D objects, the input of 3-D U-Net is still
based on the linearized approximation, BA, which is incapable
of imaging high-contrast objects. Thus, how to solve 3-D
super-resolution imaging problems with high-contrast objects
is still a challenging task.

In this article, a semijoin extreme learning machine
(SJ-ELM) solver is proposed for quantitative super-resolution
imaging of 3-D objects with high contrasts. The extreme learn-
ing machine (ELM), as a single-hidden layer feed-forward
neural network (SLFNN), is suitable for nondifferential acti-
vation functions; to a large extent, it prevents some troubling

issues, such as stopping criteria, learning rate, training epochs,
and local minima [44]. Different from most neural networks,
ELM only needs to solve the matrix between the hidden layer
and the output layer. This is the merit of the ELM. Compared
with the traditional ELM, there are two hidden layers in
SJ-ELM. Meanwhile, based on the semijoin strategy, the nodes
in the hidden layer of SJ-ELM are not totally connected
to the nodes in the output layer, so both the inner matrix
dimensions and required memory storage of SJ-ELM are less,
and the convergence of the model is faster. In the proposed
scheme, two channels are employed for mapping permittivity
and conductivity of objects, respectively, through converting
the scattered field data by using the semijoin strategy. The
proposed scheme is different from DeepNIS in [41], BPS and
DCS in [42], and BA-3-D U-Net in [43] since the preliminary
image of model parameter distribution in these three schemes
is first obtained by linear approximations, e.g., BP or BA,
and then, deep learning neural networks, such as CNN or
U-Net, are employed to map the preliminary image to the final
reconstructed results. For the proposed model, the scattered
field data can be directly mapped to the distribution of object
parameters even though the final reconstructed objects have
high contrasts.

Meanwhile, the proposed SJ-ELM also differs from our
previous work in 2-D [45] in which this work can reconstruct
the permittivity and the conductivity of 3-D objects in two
channels. Furthermore, in [45], the nonlinear mapping mod-
ule (NMM) part is based on the full-join ELM architecture.
Unfortunately, this kind of architecture is not suitable for
3-D problems because of its unacceptably high computational
cost. The main contributions of the proposed SJ-ELM can be
summarized as follows. First, to reduce the computational bur-
den for super-resolution imaging, a novel semijoin strategy is
proposed to set the connection between the nodes of the hidden
layer and the output layer of SJ-ELM. Meanwhile, the semi-
join strategy can improve the convergence performance of
the solver. On the other hand, this strategy decreases the
inner matrix dimensions, thus requiring less memory storage
compared with the traditional full-join strategy. The detailed
description is shown in Section III. Second, the proposed
SJ-ELM can conduct 3-D super-resolution imaging of high-
contrast objects due to the convergence guarantee from the
semijoin strategy. So far, this kind of imaging problem is
always been a challenging task in electromagnetic inversion.
It is worth mentioning that SJ-ELM is only constructed with
shallow neural networks based on the ELM, which has low
training costs compared with the deep learning model for a
3-D imaging problem.

This article is organized as follows. In Section II, the formu-
lation of MWI based on integral equations is briefly reviewed.
In Section III, the proposed SJ-ELM is discussed in detail.
In Sections IV and V, tests with numerical and experimental
data are, respectively, conducted. Finally, we summarize this
article in Section VI.

II. CONVENTIONAL SOLUTIONS OF MWI

Through-wall imaging is an important application of MWI.
Thus, this article mainly considers this layered medium case.
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The forward model for EM scattering in a layered medium is
formulated by the state equation, which can be expressed as
a volume integral

En
inc = En

tot − jωεb

∫
D

G
nm

EJ

(
r, r�) · χ

(
r�)Em

tot

(
r�)dr� (1)

where χ = (ε − εb)/εb is the contrast function of the objects,
εb is the permittivity of the background medium in the mth
layer, ω is the angular frequency, En

inc is the incident electric
field in the nth layer, and En

tot and Em
tot are the total electric

field in the nth and mth layers, respectively. The inversion
model is formulated by the data equation [46], [47], which
can be expressed as

En
sct(r) = jωεb

∫
D

G
nm

EJ

(
r, r�) · χ

(
r�)Em
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(
r�)dr� (2)

where G
nm

EJ is the layered medium dyadic Green’s function
(DGF) [48] connecting the equivalent electric current sources
in the mth layer and the receivers in the nth layer, and D is
the computation domain enclosing the scatterers and located
in the mth layer. In the forward scattering computation, (1)
is discretized, and Em

tot in the mth layer is solved by the
stabilized biconjugate gradient fast Fourier transform (BCGS-
FFT) method [49].

In the inverse scattering computation, (2) is discretized, and
the model parameter χ is usually solved by the variational
Born iterative method (VBIM) [45], [47] or other traditional
nonlinear inverse scattering methods. This iteration continues
until the misfit between the measured scattered field and the
model calculated field reaches a stop criterion. In this work,
we will propose the SJ-ELM solver to solve this inverse
problem and compare it with VBIM.

One should note that the discretization in the forward solver
is different from the discretization in the inversion scheme.
For the forward solver, the discretization should satisfy the
requirement of forward calculation in terms of the sampling
density. In the inversion, the discretization of the imaging
domain mainly depends on the requirement of imaging res-
olution and computational cost.

III. PROPOSED SJ-ELM MODEL

A. Semijoin Extreme Learning Machine

Compared with the full-joint strategy in the traditional
ELM [44], for the semijoint strategy, the nodes in the hidden
layer are not totally connected to the nodes in the output layer,
so both the inner matrix dimensions and required memory stor-
age of SJ-ELM are less, and the convergence of the model is
faster. To relieve the convergence stress of the machine learn-
ing method during the inversion process, as shown in Fig. 1,
the permittivity and the conductivity are conducted to inverse
with two separate channels, respectively. The scattered fields
obtained from the forward solver are complex value data,
while the relative permittivity and conductivity of each channel
are real values. Thus, each channel is employed to convert
the complex scattered field data to the real permittivity and
conductivity values with a simple structure and low training
cost, respectively. However, the outputs of two channels will

be composed of the complex permittivity as the final inversion
result of the proposed SJ-ELM.

Both channels have the same structure, and each channel
consists of four layers, i.e., an input layer, two hidden layers,
and an output layer. In each channel, each hidden layer
receives the output of the previous layer in input and transmits
it to the next layer. The input of the j th training sample
is a column vector x j = [x1 j, x2 j , . . . , xmj ]T ∈ Cm

, which
contains the complex values Esct

x , Esct
y , and Esct

z for all the
transmitter and receiver combinations to the permittivity or
conductivity distribution in 3-D space, where m is the input
dimension of the j th training sample, j = 1, 2,…, P , and
P presents the total set number of training data. The whole
imaging space is discretized into N1, N2, and N3 voxels in
the x-, y-, and z-directions. Correspondingly, for the target
of the j th training set, the corresponding j th output of the
j th training sample could be expressed as a column matrix
o j = [o1 j , o2 j , . . . ,oN1×N2×N3 j ]T ∈ R(N1×N2×N3)×1, where
N1 × N2 × N3 is the total number of voxels in the imaging
domain. Usually, in the 3-D super-resolution imaging, N1 ×
N2 × N3 is a huge number, which will bring an unacceptable
burden for computer memory. Thus, in the proposed semijoin
strategy, the output matrix is uniformly divided into N subsets,
which could be described as o j = o1

j ∪ . . . on
j . . . ∪ oN

j , where
on

j ∈ R((N1×N2×N3)/N)×1. For the convenient description, here,
we set (N1× N2 × N3)/ N = F . After many numerical
experiments and analyses, N is recommended to set as the
maximum value of N1, N2, and N3.

An input layer with m nodes, a complex-valued hidden layer
with L nodes, a real-value hidden layer with S nodes, and
an output layer with F nodes are contained in SJ-ELM. The
calculation of the nth subset could be expressed as

on
j = α

n
gr

(
w

n
r ·

∣∣∣βn
gc

(
w

n
c · x j + bn

)∣∣∣ + pn
)
. (3)

From the input layer to the first hidden layer, w
n
c , bn , β

n
,

and gc are involved. w
n
c , which is an L × m complex-valued

random weight matrix, connects the input layer and the first
hidden layer. bn , which is L complex-valued random column

vector, presents the threshold of the first hidden layer. β
n

is
an F × L complex-valued matrix that connects the complex-
valued hidden layer to the real-value hidden layer. Its elements
will be determined in the training. gc is the nonlinear activation
function of the first hidden layer, and its output is the L
complex value numbers in the nodes of the first hidden layer.

From the first hidden layer to the second hidden layer, w
n
r ,

pn , α
n
, and gr are involved. w

n
r is S × F real-value random

matrix as the weight matrix between the first hidden layer
and the second hidden layer. pn is a vector with S real-value
random numbers. α

n
is an F × S real-value random matrix,

which is the weights connecting the nodes in the second
hidden layer and the output layer. gr is the real-value activation
function of the second hidden layer.

Based on our previous study [45], the inverse hyperbolic
function and the sigmoid function expressed in the following:

gc(x) = arcsin h(x) =
∫ x

0

dt[(
1 + t2

)1/2
] (4)
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Fig. 1. Structure of the proposed SJ-ELM scheme, which consists of two channels for mapping the relative permittivity and conductivity distributions of
objects, respectively. Both channels have the same structure, and each channel consists of four layers, i.e., an input layer, two hidden layers, and an output

layer. α
n

and β
n

are the weight matrix of both hidden layers for the nth subset, and they could be obtained from the target as shown by arrows, respectively.

gr(x) = sigmoid(x) = 1

1 + e−x
(5)

are the complex activation function gc for the first hidden layer
and the real activation function gr for the second hidden layer,
respectively.

According to the ELM theory [44], [50]–[52], the initial
values of w

n
c , bn , w

n
r , and pn are set randomly. Here, “random”

means that the elements in the weight matrices are randomly
generated instead of being obtained in the training. The
training cost is low since we only need to solve the matrices

β
n

and α
n
.

Assume that the corresponding true permittivity or conduc-
tivity values of the nth subset of the j th training sample are
denoted as tn

j . Let
∑P

j=1 �on
j − tn

j� = 0, and employ layer-by-

layer solving strategy to obtain the weight matrices α
n

and β
n

of both hidden layers for the nth subset, respectively, where
the second hidden layer is employed to make the model further
converge to the target based on the results from the first hidden

layer. The relationship between the weight matrix β
n

of the
first hidden layer and tn can be compactly expressed as

β
n
gn

c = tn, n = 1, . . . , N (6)

where the complex-valued matrix gn
c = (w

n
c · x j + bn)L×P is

the first hidden layer output matrix. Thus, the desired complex
weight matrix of β̂

n
can be obtained by the following equation:

β̂n = tn gn†
c , n = 1, . . . , N (7)

where the complex matrix gn†
c presents the Moore–Penrose

generalized inverse of the complex matrix gn
c . The relationship

between the weight matrix α
n

of the second hidden layer and
tn can be compactly expressed as

α
n
gn

r = tn, n = 1, . . . , N (8)

where the real value matrix gn
r = [gn

r (w
r
n|β

n
gc| + pn)]K×P is

the output matrix of the second hidden layer. Thus, the desired
weight vector, which connects the i th hidden node and the
output layer nodes, could also be computed by

α̂n = tn gn†
r (9)

where the complex matrix gn†
r is the Moore–Penrose general-

ized inverse of a complex matrix gn
r .

B. Assessment of the Training Cost

The node number of the hidden layers is set on the basis of
the Hecht–Nelson method [53]: when the dimension of input
data is n, the node number of the hidden layer is 2n + 1. Thus,
the node numbers of the first and second hidden layers are
L = 2m + 1 and S = 2F +1, respectively, and the dimensions

of w
n
c , bn , β

n
, w

n
r , pn, and α

n
could be further written as

(2m + 1) × m, (2m + 1) × 1, F × (2m + 1), (2F + 1) × F ,
(2F + 1) × 1, and F × (2F + 1). For the total N subsets,
the dimensions of wc, b, β , wr , p, and α could be written as
[(2m + 1) × N] × m, [(2m + 1) × N] × 1, F × [(2m +
1) × N], [(2F + 1) × N] × F , [(2F + 1) × N] × 1, and
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F × [(2F + 1) × N]. Based on the ELM theory [50]–[53],
β and α are the tunable parameters, and their dimensions are
F × [(2 m + 1) × N] and F × [(2 F + 1) × N].

Meanwhile, for the full-join strategy, the dimensions of wc,
b, β, wr , p, and α based on the Hecht–Nelson method are
(2m +1)×m, (2m +1)×1, (N × F)× (2m +1), [2(N × F)+
1]×(N ×F), [2(N ×F)+1]×1, and (N ×F)×[2(N ×F)+1],
respectively. Thus, comparing the traditional full-join strategy
and the semijoin strategy, the dimensions of β are the same;
however, the dimension of α based on the semijoin strategy is
(2F + 1) /(2N × F + 1) of the ones based on the traditional
full-join strategy, which could be obtained with the calculation
of {F × [(2 F + 1) × N]}/{(N × F) × [2(N × F) + 1]}.
Furthermore, (2F + 1) /(2N × F + 1) will be less than 1 if
N is larger than 1. Thus, it could be proven that the training
burden based on the semijoin strategy is less than the ones
based on the traditional full-join strategy even though there
are N submodels in SJ-ELM.

Meanwhile, one should note that the submodels are inde-
pendent of each other, so there does not exist any information
interchange between submodels. Thus, the imaging process
for a submodel with the output dimensions of (N1 × N2 ×
N3)/Nmax × 1 could be regarded as a 2-D imaging problem
with respect to the output dimensions and structure since
the output of each submodel is a 2-D slice of the imaging
domain along the direction of dimension Nmax, where Nmax is
the maximum value of N1, N2, and N3. In other words, the
proposed SJ-ELM divides the 3-D imaging problem into Nmax

sets of 2-D imaging slices, and the output of each submodel
is the corresponding slice of the 3-D imaging domain. Thus,
different from other full-join methods that require a large
number of training samples, the proposed model could solve
the 3-D imaging problem with the cost of 2-D problems.
Meanwhile, one should note that ELM randomly chooses
hidden nodes and analytically determines the output weights
for hidden layers of feedforward neural networks, which has
much lower training costs than the traditional feedforward
neural networks. Here, “random” means that the elements in
the weight matrices are randomly generated instead of being
obtained in the training. This is the merit of the ELM. The
training cost is low since we only need to solve the matrices
α and β.

Furthermore, with the dimensions of the output layer
increasing, which will lead to stronger nonlinearity, the node
number of both hidden layers and/or the number of training
samples should also be largely increased to converge. Thus,
the dimensions of β and α in the full-join strategy are much
larger than them in the semijoin strategy, which means the
heavier computational burden and more difficult convergence
in training. Therefore, comparing with the full-join strategy,
the semijoin strategy is more economical for the 3-D MWI
problem. However, one should note that more CPU time will
be needed to train the several submodels in parallel.

C. Performance Evaluation

To prove the efficiency of SJ-ELM, we have added a
performance evaluation to test the proposed SJ-ELM. Two

approximation problems in the complex domain used in [54]
are employed to test the efficiency of the proposed model,
and the fully complex extreme learning machine (CELM) [55]
is selected as the comparison model. As given in the setting
in [56], 10 000 training samples and 1000 testing samples are
randomly drawn from the interval [0 + j0, 1 + j ]. The first
verification is based on a nonanalytic function, as shown in
the following equation:

f (z) = f (x + j y) = e j y
(
1 − x2 − y2) (10)

and the second one is an analytic function given as

f (z) = f (x + j y)

= sin(x) cosh(y) + j cos(x) sinh(y). (11)

Considering the MWI problem that maps the scattered field
data to the permittivity and/or the conductivity of objects,
we modify the following function to map the complex domain
to the real domain as:

f (z) = f (x + j y) = ∣∣e j y
(
1 − x2 − y2)∣∣ (12)

f (z) = f (x + j y)

= |sin(x) cosh(y) + j cos(x) sinh(y)| (13)

respectively, for (10) and (11).
Here, a performance index, i.e., the relative root-mean-

squared error (RRMSE), is given as

RRMSE =
√∑N

i=1 (yi − ŷi)
2

N

/√∑N
i=1 (yi)

2

N
(14)

where yi is the calculation result from (12) or (13) and ŷi is the
corresponding output from the neural network. The average
results of RRMSE and standard deviation (Dev) are shown
in Table I. The calculations are performed on an Intel i7-9700
3.0-GHz machine with 64-GB RAM. Here, the node numbers
of hidden layers are set as 50, 100, and 500, respectively, for
CELM. The node number of both hidden layers from SJ-ELM
is set to be the same value as the CELM. It could be seen that,
compared with CELM, SJ-ELM has a more accurate and stable
performance. Due to having two hidden layers in SJ-ELM,
the running time is a little longer.

IV. NUMERICAL RESULTS

In this section, three numerical examples are presented
to verify the validity of the proposed SJ-ELM for MWI
of 3-D objects. In the first example, the conventional VBIM
is employed to compare and confirm the implementation
efficiency and accuracy of SJ-ELM. The second example
further compares the proposed model with VBIM to evaluate
the super-resolution imaging ability of SJ-ELM. In the third
example, the proposed model is evaluated by reconstructing
the 3-D objects with high contrasts. All the inversions are
performed on a workstation with 20-cores Xeon E2650 v3
2.3G CPU, 512-GB RAM. In the numerical examples, all the
simulation settings, including excitation, receiving antennas,
and boundary conditions, are the same in the forward models
to generate the training and testing or synthetic “measured”
data. Meanwhile, to avoid the “inverse crime,” the meshes
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TABLE I

PERFORMANCE COMPARISON OF CELM AND SJ-ELM

used in the forward modeling and inversion are different. The
forward modeling mesh is smaller than that in the inversion,
and they are not aligned. In fact, the forward modeling mesh
can be curvilinear so that it captures the curved geometries,
while the inversion mesh is the regular structured mesh with
square elements, so there is a geometry approximation for
curved objects.

A. EM Inversion Setups

In the three examples, the operating frequencies of are
300, 500, and 600 MHz, respectively. The corresponding
wavelengths of the three examples are λ0 = 1 m, λ0 = 0.6 m,
and λ0 = 0.5 m in the air, respectively.

For the first example, totally 98 transmitters are uniformly
located in two 2.4 m × 2.4 m planes at z = −0.2 m
and z = 1.2 m, respectively. The scattered fields are col-
lected by a 128-receiver array uniformly located in two
2.8 m × 2.8 m planes at z = −0.1 m and z = 1.1 m,
respectively. The imaging domain D enclosing the objects has
the dimensions of 0.8 m × 0.8 m × 0.8 m and is discretized
into 40 × 40 × 40 voxels with its center at (0, 0, 0.5) m.

Fig. 2. 3-D training model for the first and second examples, where a
cuboid, a cube, a sphere, and a cylinder as four nonoverlapping scatterers in
DOI are employed to train SJ-ELM, and the parameters of these scatterers are
assigned random values with the ranges shown in Table II. The transmitters
and receivers are uniformly located in two planes on the upper and lower
sides.

Fig. 3. 3-D training model for through-wall imaging as the third example
where a cuboid, a cube, a sphere, and a cylinder as four nonoverlapping
scatterers in DOI are employed to train SJ-ELM, and the parameters of these
scatterers are assigned random values with the ranges shown in Table II. The
transmitters and receivers are uniformly located in two planes on the upper
and lower sides.

The input of this example is the vector of scattered field,
and each vector contains 98 (transmitters) ×128 (receivers)
elements. The corresponding outputs of the two channels are
the vectors of distribution of the relative permittivity and
conductivity, respectively, and the vector has the dimension of
(40 × 40 × 40) × 1. Based on the semijoin strategy, the out-
put is discretized into 40 subsets.

The inversion domain D of the second example is with
the dimensions of 1.4 m × 1.4 m × 0.4 m. The inversion
domain D here is discretized into 70 × 70 × 20 voxels with its
center at (0, 0, 0.3) m. Totally 128 transmitters are uniformly
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Fig. 4. Three different tests are used to evaluate the proposed SJ-ELM scheme. The first row is the ground truth, and from the second row to the fourth row,
the imaging results from BA, VBIM, and the proposed model are shown, respectively. The first, second, and third columns show the distribution of relative
permittivity, and the fourth, fifth, and sixth columns show the distribution of conductivity.

located in two 2.8 m × 2.8 m planes at z = −0.1 m and
z = 0.7 m, respectively, and 162 receivers arrays uniformly
located in two 3.2 m × 3.2 m planes at z = −0.2 m
and z = 0.8 m, respectively. The imaging scenes, as shown
in Fig. 2, of the first and second examples are similar. The
input of this example is the vector of scattered field, and each
vector contains 128 (transmitters) × 162 (receivers) elements.
The outputs of the two channels are the vectors of distribution
of the relative permittivity and conductivity, respectively, and
the vector is with the dimension of (70 × 70 × 20) × 1.
Based on the semijoin strategy, the output is discretized into
70 subsets.

For the third example, another through-wall imaging cir-
cumstance, as shown in Fig. 3, is considered to evalu-
ate the proposed model. The center of inversion domain
D of is at (0, 0, 0) m and has the dimensions of
1.2 m × 1.2 m × 1.2 m. Here, the inversion domain D is
discretized into 60 × 60 × 60 voxels. One hundred sixty-two
transmitters are uniformly located in two 2 m × 2 m planes at
z = −2.8 m and z = 2.8 m, respectively. Meanwhile, the scat-
tered fields are collected by a 242-receiver array uniformly
located in two 2.5 m × 2.5 m planes at z = −2.9 m and z
= 2.9 m, respectively. Similar to the above two examples, the
input of this example is the vector of scattered field, and each
vector contains 162 (transmitters) × 242 (receivers) elements.
The outputs of the two channels are the vectors of distribution
of the relative permittivity and conductivity, respectively, and

the vector has the dimension of (60 × 60 × 60) × 1. Based on
the semijoin strategy, the output is discretized into 60 subsets.

In order to quantitatively evaluate the reconstruction perfor-
mance, we define the model misfit and data misfit under the
L2 norm as

Errmodel = �mdR − mdT �
�mdT � (15)

Errdata = �daR − daT �
�daT � (16)

where mdT and mdR are the true complex permittivity values
of the model and the reconstructed complex permittivity values
of the model for all the voxels, respectively. daT and daR are
the vectors of measured scattered field data collected at all the
receivers and the reconstructed scattered field, respectively.

B. Training Details for Three Examples

In these three numerical examples, we use a cuboid, a cube,
a sphere, and a cylinder as four nonoverlapping scatterers in
DOI to train SJ-ELM. As shown in Figs. 2 and 3, the centers
of the cuboid, sphere cylinder, and cube, i.e., x1, y1, z1, x2,
y2, z2, x3, y3, z3, x4, y4, and z4, the side lengths of cuboid
and cube, i.e., l1, l2, l3, and a, the radii of sphere and cylinder,
i.e., r1 and r2, and the height of the cylinder, i.e., h, are the
variables and assigned random values with the ranges shown
in Table II. The relative permittivities and conductivities of
four scatterers are randomly set with different values in the
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TABLE II

PARAMETER RANGES FOR THE OBJECTS SHOWN IN FIGS. 2 AND 3 FOR EXAMPLES 1–3

TABLE III

MODEL MISFITS AND DATA MISFITS OF BA, VBIM, AND THE PROPOSED

MODEL FOR TESTS #1–3

range of [2, 4] and [0, 0.01] for the first examples, [2, 5]
and [0, 0.03] for the second example, and [1, 7] and [0,
0.08] for the third example. The proposed SJ-ELM is trained
with totally 200 randomly generated training samples for the
three examples, respectively. The node number of two hidden
layers is set based on the Hecht–Nelson method [53]. One
should note that SJ-ELM should be trained for these three
examples, respectively, due to different imaging conditions.
Meanwhile, all the parameters in the trained model are settled.
When the scattered field data are input to the trained model,
the corresponding output is unique.

C. Comparisons With Conventional Inversion Methods

To evaluate the imaging accuracy and efficiency of the
proposed SJ-ELM, its imaging results are compared with
those from VBIM. As shown in Fig. 4, Test #1 has a single
object, and Test #2 has two separated and different objects,
while these two objects are tangent in Test #3. For Test #1,
the radii of the outer and inner circles are 0.2 and 0.1 m
(0.2λ and 0.1λ). For Test #2, the upper cuboid has the
dimensions of 0.3 m × 0.2 m × 0.2 m (0.3λ × 0.2λ× 0.2λ),
and the other cuboid has the dimensions of 0.2 m × 0.2 m ×
0.2 m (0.2λ× 0.2λ× 0.2λ). For Test #3, the cuboid has the
dimensions of 0.2 m × 0.2 m × 0.4 m (0.2λ× 0.2λ× 0.4λ).

The contrasts of the three test samples are also gradually
increased. As the contrast values increase and the geometric
shape of objects becomes more complex, it is more and more
difficult for VBIM to achieve a low data misfit and model

Fig. 5. Top view of Test #4. The distances between objects are 5/20λ,
4/20λ, 3/20λ, 2/20λ, and 1/20λ. Meanwhile, the relative permittivity and
conductivity of these six objects are gradually decreased along the positive
x-direction, i.e., 3.2–2.2 with the step of −0.2 for the relative permittivity and
0.012–0.002 with the step of −0.002 for conductivity.

Fig. 6. Test #4 is employed to evaluate the super-resolution imaging ability of
the proposed scheme. The first column shows the ground truth of the relative
permittivity and conductivity, respectively. The second and third columns are
the imaging results of the relative permittivity and conductivity from VBIM
and the proposed scheme, respectively.

misfit, which could be revealed in Table III. In addition, one
should note that the model misfits of VBIM are fluctuant
for different test samples. On the contrary, the model misfits
obtained from the proposed SJ-ELM model are always lower
than VBIM, as shown in Table III.

Meanwhile, as shown in the fourth row of Fig. 4, the imag-
ing results obtained from the proposed SJ-ELM are not
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Fig. 7. Tests #5–8 are employed to further evaluate the super-resolution imaging ability of the proposed scheme. The first, third, and fifth columns are the
3-D perspective, xy slice at z = 0.3 m, and yz slice at x = 0 m of ground truth, respectively. The second, fourth, and sixth columns are the 3-D perspective,
xy slice at z = 0.3 m, and yz slice at x = 0 m of the imaging results from the proposed scheme.

affected by different contrast values, and geometric shapes
of objects and the model misfits, as shown in Table III,
obtained from the proposed model almost remain unchanged.

This illustrates that the proposed SJ-ELM is more stable and
competent to deal with MWI compared with the conventional
VBIM.
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Fig. 8. First, second, and third columns are the 3-D perspective, xy slice at z = 0.3 m, and yz slice at x = 0 m of the relative permittivity imaging results
from the proposed scheme in the 20-dB noise environment. The fourth, fifth, and sixth columns are the 3-D perspective, xy slice at z = 0.3 m, and yz slice
at x = 0 m of the conductivity imaging results from the proposed scheme in the 20-dB noise environment.

Furthermore, as an example, each VBIM iteration takes
about 40 min in Test #3; thus, the total time cost in Tests #1–3
of VBIM is much higher than that of the trained SJ-ELM
which spends less than 1 s to accurately -D objects, even
though about 1-h training time of SJ-ELM is added.

Thus, comparing with VBIM, the trained proposed SJ-ELM
model can achieve more accurate and stable imaging perfor-
mance and higher imaging efficiency.

Meanwhile, for the full-join strategy in this example, the
dimensions of β and α based on the Hecht–Nelson method
are (40 ×40 ×40) × (128 ×98 ×2 + 1) and (40 ×40 ×40) ×
(40 × 40 × 40 × 2 + 1), i.e., 64 000 × 25 089 and 64 000 ×
128 001, respectively. However, for the semijoin strategy with
parallel training in this example, the dimensions of β and α

based on the Hecht–Nelson method are (40 × 40) × [(2 ×
128 × 98 + 1) × 40] and (40 × 40) × [(2× 40 × 40 + 1) × 40],
i.e., 1600 × 1 003 560 and 1600 × 128 040. Thus, compared
with the full-join strategy, which requires a heavy burden
for the memory and will lead to an enormous challenge
for computational efficiency, the proposed semijoin strategy
is easier to converge and more suitable for the 3-D MWI
problem. More proven details can be referred to Appendix B.

D. Super-Resolution Imaging

To test the super-resolution imaging ability of the proposed
SJ-ELM, two parts are investigated. First, VBIM is employed

as a comparison model to evaluate the proposed model with
Test #4. Then, we design a series of test cases to further
evaluate the super-resolution imaging ability of the proposed
SJ-ELM in noise-free and noisy environments, respectively.
According to the definition in [57], as the image resolution is
less than 0.25 wavelength, it can be called super-resolution.
There are six objects in Test #4, as shown in Fig. 5, and
the adjacent spacings between them are 5/20λ, 4/20λ, 3/20λ,
2/20λ, and 1/20λ, respectively; meanwhile, the relative per-
mittivity and conductivity of them are gradually decreased,
along the positive x-direction. The height of each object is
0.1 m (or 0.167λ).

Fig. 6 shows the imaging results of VBIM and the proposed
model, respectively. It could be seen that the imaging results of
VBIM cannot distinguish the fifth and sixth objects separately;
however, the proposed model could clearly image both relative
permittivity and conductivity of the objects. The imaging
performance of VBIM and the proposed model also could
be revealed with data misfits and model misfits, which are
1.12% and 11.534% for VBIM and 2.592% and 3.215% for
the proposed model, respectively. Thus, compared with VBIM
in terms of imaging resolution, the proposed model could
have better performance and achieve super-resolution imaging
results.

Then, to further evaluate the imaging resolution of the
proposed model, we design a series of tests, as shown in Fig. 7,
where the adjacent spacings between objects are gradually
decreased to 4/10λ, 3/10λ, 2/10λ, and 1/10λ from Test #5 to
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Fig. 9. First, second, and third columns are the 3-D perspective, xy slice at z = 0.3 m, and yz slice at x = 0 m of the relative permittivity imaging results
from the proposed scheme in the 10-dB noise environment. The fourth, fifth, and sixth columns are the 3-D perspective, xy slice at z = 0.3 m, and yz slice
at x = 0 m of the conductivity imaging results from the proposed scheme in the 10-dB noise environment.

Test #8, respectively. The height of each object is 0.1 m (or
0.167λ). Meanwhile, the relative permittivity and conductivity
of nine connected objects are gradually increased from the
inside to the outside, i.e., 2.2–3.8 with the step of 0.2 for
the relative permittivity and 0.002–0.018 with the step of
0.002 for conductivity. For these test cases, it is very difficult
for VBIM to obtain a low model misfit. The evaluated data
misfits of VBIM are 0.716%, 0.712%, 0.705%, and 0.708% for
Tests #5–8, respectively. Figs. 7–9 show the imaging results
obtained from the proposed model in the noise-free, −20- and
−10-dB Gaussian white noise environments (i.e., the signal-
to-noise ratio (SNR) of power is infinity, 20 dB, and 10 dB,
respectively). It could be seen the proposed model can image a
stable imaging performance in the noise-free environment and
have a stable trend of model misfits even though the distances
between objects changed, and the corresponding model misfits
are small, as shown in Table IV The evaluated data misfits are
2.357%, 2.269%, 2.177%, and 2.634% for Tests #5–8, respec-
tively, in the noise-free environment, also reveal the similar
stable trend. Meanwhile, the boundary between two connected
objects can be clearly imaged, which is a challenging task to
image two connected objects with close relative permittivity
and conductivity by other traditional methods. Meanwhile,
as shown in Fig. 7, the xy slice at z = 0.3 m and the yz slice
at x = 0 m present the reconstructed results in a transverse
plane and along the longitudinal axis, respectively. However,
the anisotropy of the resolution is not observed from these
two slices. This may be due to the fact that our transmitter and
receiver apertures are large enough to avoid obvious anisotropy

TABLE IV

MODEL MISFITS OF THE PROPOSED SCHEME FOR TESTS #5–8 IN
NOISE-FREE, 20-db NOISE, AND 10-dB NOISE ENVIRONMENTS,

RESPECTIVELY

in resolution. Then, as shown in Figs. 8 and 9, as the noise
increases, the imaging results become more and more blurred;
however, the outline of objects also can be distinguished, and
the model misfits of four test cases, as shown in Table IV,
almost remain the same levels for both 20- and 10-dB noise
environments, although the distances between objects are
closer. Thus, the proposed method has good antinoise ability
and super-resolution imaging ability in the noisy environment.

E. High Contrast

As shown in Fig. 10, Test #9 consists of 27 spheres placed
in three layers, and each layer has three spheres. The center
position, radius, relative permittivity, and conductivity of each
sphere are listed in Table V. The relative permittivity and
conductivity of these spheres are gradually increased with
the steps of 0.2 and 0.002 from 1.2 and 0.002, respectively.
The radius of each sphere is 0.32λ. Thus, the maxima of
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Fig. 10. Relative permittivity and conductivity imaging results of Test
#9 from the proposed scheme, where imaging objects are with high contrast.

the relative permittivity and conductivity are 6.4 and 0.054,
respectively.

Fig. 10 shows the 3-D imaging results from the proposed
model. Meanwhile, we select three slices located at z =
−0.32 m, z = 0 m, and z = −0.32 m, as shown in Fig. 11,
to illustrate the imaging results clearly. It can be seen that
both the permittivity and conductivity imaging results obtained
from the proposed model can distinguish a good spatial resolu-
tion and provide accurate estimates of the contrast permittivity
imaging and conductivity imaging even though two adjacent
spheres have close values of dielectric parameters, or the
object has high contrast. The model misfit of this case is
3.88%, and the model misfits of relative permittivity and
conductivity are 2.89% and 12.5%, respectively. The evaluated
data misfit is 1.225%. However, for the conventional method,
such as VBIM, it is really difficult to converge for this test,
which consists of objects with high contrasts, but the proposed
SJ-ELM can obtain super-resolution imaging results in the
application of through-wall imaging.

Throughout the model misfits and data misfits, which are
obtained from the proposed SJ-ELM, from the first numerical
example to the third numerical example, the contrasts of
objects are gradually increased, and the model misfits remain
at the same level because the objective function of the machine
learning method is based on the model misfit. However,
with the relative permittivity increasing, the corresponding
data misfits are gradually decreased. This is because with
contrast increasing, the nonlinearity of the inversion problem
is aggravated, and the caused multisolution problem brings
more solutions to satisfy the desired data misfit. The machine
learning method could reconstruct the objects well even though
the objects are with high contrasts. Thus, with contrast increas-
ing, the data misfit reveals a decreasing trend even though
model misfits are at the same level. This is quite different
from the conventional inverse methods, which still could have
a very low data misfit when the objects are with high contrasts;
however, the model misfit is also very large. Compared with
conventional inverse methods, the advantage of the machine
learning-based method is that a stable model misfit could be
obtained even though the objects have high contrasts.

TABLE V

PARAMETERS OF EACH SPHERE OF TEST #9

V. EXPERIMENTAL DATA

To further evaluate the proposed model, the 3-D experi-
mental data from the Fresnel database [58] are used in this
test. Here, simulation data are used to train the model, and
actual measured data are employed to test the trained model,
where the simulation setting is the same as the experimental
environment. A “CubeSpheres” target with copolarized data,
as shown in Fig. 12, is adopted. Here, we select two frequency
points at 3 and 8 GHz for the evaluation. Each sphere has a
diameter of 15.9 mm and a relative permittivity of 2.6. They
are assembled in order to create a cube of the side length
of 47.6 mm. In the measurement environment, the transmitter
arrays are located on a sphere with the radius of 1.796 m
surrounding the target, where the azimuthal angle θs is in the
range from 20◦ to 340◦ with the step of 40◦, and the polar
angle φs is in the range from 30◦ to 150◦ with the step of 15◦.
The receiver arrays are located on the azimuthal plane with
the radius of 1.796 m, and the azimuthal angle θr is in the
range from 0◦ to 350◦ with the step of 10◦. The experimental
scattered data are corrected for drift errors and calibrated,
successively [59].

According to the experimental setup, the cubic volume
imaging domain of dimensions 100 × 100 × 100 mm3,
centered at (0, 0, 0) of the coordinate system, is divided into
96 × 96 × 96 voxels. Based on the measurement environment
and the experimental setup, totally 200 training samples with
a frequency of 3 and 8 GHz are produced and employed to
train the proposed model, respectively. Each training sample
contains a cuboid, a cube, a sphere, and a cylinder as four



4852 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 69, NO. 11, NOVEMBER 2021

Fig. 11. Relative permittivity and conductivity imaging results of xy slices
at z = −0.32, 0, and 0.32 from the proposed scheme, respectively, where the
relative permittivity and conductivity of each slice are gradually increased,
and the model misfit of this case is 3.88%, and the model misfits of relative
permittivity and conductivity are 2.89% and 12.5%, respectively.

Fig. 12. Ground-truth and imaging results of relative permittivity profiles of
“CubeSphere” at 3 and 8 GHz by the proposed scheme, respectively.

nonoverlapping scatterers in DOI, which are chosen similar
to those in Section IV. The relative permittivities of four
scatterers are randomly set with different values in the range
of [1, 4]. The measured scattered field data at 3 and 8 GHz
of the “CubeSpheres” target are employed as the input of the
test, and the reconstructed relative permittivity distribution of
both frequency points from the proposed model is obtained,
as shown in Fig. 12. The model misfits of the reconstructed
targets at 3 and 8 GHZ are 4.533% and 5.236%, respectively.
Meanwhile, the data misfits for the reconstructed targets at
3 and 8 GHz are 4.692% and 6.132%, respectively. Because
the nonlinearity at 8 GHz is stronger than that at 3 GHz,
with the same number of the receiver arrays, the imaging
errors, model misfit, and data misfit at 8 GHz are higher than
those at 3 GHz. The results from the experimental data further
verify the validity of the proposed model, which has a good

performance in the practical experimental environment for the
MWI problems.

VI. CONCLUSION

MWI, which is a noninvasive and nondestructive technique
to inspect materials by using incident electromagnetic waves
generated in the microwave range, has gained a lot of interest
recently. Due to the intrinsic nonlinearity of the inverse scat-
tering problem and the ill-posedness of the discretized matrix
equations, it is a challenging task to find a reliable, accurate,
and numerically efficient inversion method. The combination
of wave physics with machine learning techniques is a novel
direction to study MWI problems.

In this article, an SJ-ELM model is proposed for super-
resolution 3-D quantitative imaging of objects with high
contrasts. In the proposed SJ-ELM, two channels convert the
complex-valued scattered field data to the real permittivity
and conductivity values of the imaging domain, respectively.
Each channel is constructed with a shallow neural network
structure based on the semijoin strategy. The semijoin strategy
can decrease the inner matrix dimensions and improve the
convergence performance of the model in the performance of
super-resolution imaging, so it is employed to connect between
the nodes of hidden layers and output layer to realize super-
resolution imaging.

The proposed SJ-ELM is evaluated by both synthetic data
and experimental data measured in the laboratory, respectively.
Through comparison with a conventional method, e.g., VBIM,
the proposed SJ-ELM model can achieve more accurate and
stable imaging performance and higher imaging efficiency.
In terms of imaging resolution, the proposed model can
have better performance and achieve super-resolution imaging
results. Meanwhile, in a noisy environment, the proposed
method also shows good antinoise ability and super-resolution
imaging ability, even when the measured data are contam-
inated by −10-dB noise. In addition, in the application of
through-wall imaging, the proposed SJ-ELM can obtain super-
resolution imaging results, even when the objects are with high
contrasts that are really difficult for a conventional method,
such as VBIM to converge. Finally, the reconstruction of
the laboratory-measured scattered field data at 3 and 8 GHz
for “CubeSphere” provided by Institute Fresnel demonstrates
the adaptability of the proposed SJ-ELM for high-frequency
experimental data.

APPENDIX A

The determination of N is very interesting. To reach the
super-resolution 3-D imaging, the imaging domain is divided
into a huge number of voxels, which means a heavy com-
putational burden and difficult convergence in training. Thus,
we try to reduce the computational burden and the training
cost for the super-resolution imaging, and a new semijoin
strategy is proposed to divide the output matrix into N
subsets. As mentioned above, if N is larger than 1, the ratio
(2F + 1)/(2N × F + 1), which is between that of α based
on the semijoin strategy and the traditional full-join strategy,
will be less than 1. Based on the relationship of (2F + 1)
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Fig. 13. Comparison of imaging performance between different values for N .
The first row shows the distribution of the relative permittivity, and the second
row shows the distribution of the conductivity.

TABLE VI

MODEL MISFITS BETWEEN DIFFERENT VALUES FOR N

/(2N × F + 1), the ratio value will decrease with the increase
in N . Thus, with the increase in N , the training burden will
be decreased. However, as the reviewer said, if N is a very
large number, resulting in each image having small memory,
there will be a huge number of subimages to model. It is hard
to quantitatively determine N to reach a balance between the
training burden and the number of submodels for different
application environments. Thus, we employ a trial-and-error
approach to determine the value of N for different examples.
Take the first numerical example as an example, we define
Nmax as the maximum value of N1, N2, and N3; then, N is
set equal to Nmax/2, Nmax, and 2Nmax, i.e., 20, 40, and 80, for
training, respectively.

The imaging results of different N values are shown
in Fig. 13, and the corresponding model misfits are also
provided in Table VI. It could be seen that, when N equals
20, the obtained model misfit is higher than other values of
N . However, when the value of N is increased to 80 from
40, the model misfits of both N values are at the same level
even though the model misfit based on N value with 80 is
decreased slightly. As expected, if N is a very large number,
there will be a huge number of subimages to model. Thus, N
is recommended to set with the maximum value of N1, N2,
and N3. Therefore, in our article, N is set with the value of 40,
70, 60, and 96 for the three examples and experimental data,
respectively.

APPENDIX B

A full-join strategy-based modeling method, i.e., dual-
module NMM-image enhancing module (IEM) machine learn-
ing scheme, in [44] is employed as a comparison model here to
evaluate the efficiency of the proposed method in this article.
We select the first numerical example in this article as an
example. The specific description of this numerical example
is described in the text. Both SJ-ELM, where N is set to
40, and NMM-IEM are trained with totally 200 randomly
generated training samples. The node numbers of hidden layers

Fig. 14. Comparison of imaging performance between NMM-IEM and SJ-
ELM. The first row shows the distribution of the relative permittivity, and
the second row shows the distribution of the conductivity.

Fig. 15. Model misfits of relative permittivity between three test samples
used in this article and 200 training samples.

Fig. 16. Model misfits of conductivity between seven test samples used in
this article and 200 training samples.

from both methods are set on the basis of the Hecht–Nelson
method [53]. Test #3 is selected as the testing sample.

On the one hand, from the imaging results shown in Fig. 14,
it could be seen that the imaging performance of SJ-ELM
is better than NMM-IEM, where the background is clearer,
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and the parameter distributions, including relative permittivity
and conductivity, of two scatterers are more accurate. The
model misfits of NMM-IEM and SJ-ELM also confirm the
imaging performance of both methods, where 8.682% for
NMM-IEM and 3.811% for SJ-ELM. For the full-join strategy-
based NMM-IEM in this example, the dimensions of β and α

based on the Hecht–Nelson method are (40 × 40 × 40) ×
(128 × 98 × 2 + 1) and (40 × 40 × 40) × (40 × 40 ×
40 × 2 + 1), respectively. For the semijoin strategy-based
SJ-ELM with parallel training in this example, the dimen-
sions of β and α based on the Hecht–Nelson method are
(40 × 40) × [(2 × 128 × 98 + 1) × 40] and (40 × 40) ×
[(2 × 40 × 40 + 1) × 40], i.e., 1600 × 1003560 and 1600 ×
128040. The numbers of unknowns for NMM-IEM and SJ-
ELM are 1 605 696 000 + 8 192 064 000 = 9 797 760 000 and
1 605 696 000 + 204 864 000 = 1 810 560 000, respectively,
where the number of unknowns of SJ-ELM is significantly
smaller than the number of unknowns of NMM-IEM. Thus,
compared with full-join strategy-based NMM-IEM, SJ-ELM
is much easier to converge and can obtain better imaging
performance.

On the other hand, in the calculation process, NMM-IEM
requires 85.55-GB memory, and SJ-ELM requires 30.27-GB
memory in solving β and α. Thus, for the 3-D super-resolution
imaging problem, NMM-IEM that requires an unacceptable
burden for computer memory will lead to an enormous chal-
lenge for computational efficiency.

APPENDIX C

To ensure the generalization ability of the proposed model,
we take the first example in this article as an example. The
model misfits between the three test cases and 200 training
samples are shown in Figs. 15 and 16, for the relative
permittivity and conductivity, respectively. It could be seen
that the test cases and training samples have large model
misfits. Meanwhile, from Table II in this article, the imaging
results obtained from the proposed SJ-ELM are not affected
by different contrast values, and geometric shapes of objects
and the model misfits obtained from the proposed model
almost remain unchanged. Thus, it could be concluded that the
proposed model has good generalization ability even though
the test sample is different from the training samples.
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